G. A. Valverde Castilla, J. M. Mira McWilliams, B. González Pérez

The purpose of this paper is to formulate a stochastic model for self organizing maps (SOM) within the bayesian framework. SOMs were developed by Kohonen (1980) as a tool to represent stuctures such as cortical layers in the brain as two or three dimensional maps. Even so, the first algorithm has been derived from heuristic ideas without underlying statistical motivations. The idea of proposing a SOM map that can represent the probabilistic distribution underlying a data sample has led to the development of different probabilistic alternatives. PRSOM was developed by Anouar (1998). PrSOMs was presented by Lebbah (2015). Yin proposed BSOM (Bayesian SOM). We propose a new bayesian alternative focusing on the advantages of establishing a priori distributions, a formal comparison with BSOM, SOM and EM algorithm is also presented. Finally, we showed the feasibility and accuracy of our approach over a simulated mixture of Gaussian distribution.

Palabras clave: Self Organizing Maps; bayesian methodology; simulations; dimensionality reduction; Gaussian mixture; Expectation-Maximization; prior.

Programado

GT8-1 Inferencia Bayesiana
4 de septiembre de 2019  10:40
I2L7. Edificio Georgina Blanes


Otros trabajos en la misma sesión

Redes bayesianas aplicadas a la nueva movilidad mundial

M. A. Gómez Villegas, B. González Pérez, Ó. De Gregorio Vicente

Hypothesis Testing in Presence of Adversaries

J. González Ortega, D. Ríos Insua, F. Ruggeri, R. Soyer

Measuring the dynamic leadership relationships between Spanish mutual funds: A combination of bayesian and graphs tools

P. Gargallo Valero, L. Andreu Sánchez, J. L. Sarto Marzal, M. Salvador Figueras


Últimas noticias

Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.