J. López Fidalgo, J. A. Moler Cuiral, D. P. Wiens

We aim to develop a theory of model-robust classification, and a methodology for applying this to large data sets such as arise in machine learning. The general idea is that there is a (large) population of explanatory variables, which can be easily sampled. With probability a(x; t), an item with covariates x belongs to group A and with probability 1 - a(x; t) it belongs to group .B.. We suppose that the determination of the appropriate group, given x, is difficult and expensive, so that the investigator wishes to sample from x in a manner which is more efficient than random sampling (sometimes termed .passive learning.).

Palabras clave: Big data, logistic regression, optimal experimental design, robust models

Programado

GT7-1 Diseño de Experimentos
3 de septiembre de 2019  15:30
I2L5. Edificio Georgina Blanes


Otros trabajos en la misma sesión

Robustez del diseño para modelos de tiempo de fallo acelerado con Censura tipo I

M. J. Rivas López, R. Martín Martín, I. García-Camacha Gutiérrez

Diseño Óptimo de Experimentos para la Ecuación de Antoine en experimentos de destilación

C. de la Calle Arroyo, J. López-Fidalgo, L. Rodríguez-Aragón


Últimas noticias

Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.