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1 Introduction

The Poisson distribution is a distribution commonly used in statistics and in operations
research [1, 2, 3] and plays a central role in the analysis of the transient behavior of
continuous-time Markov chains (see, e.g., [4]). Let λ > 0. A random variable Xλ is said
to have a Poisson distribution with parameter λ if

Pr[Xλ = n] =
λn

n!
e−λ, n = 0, 1, . . . . (1)

Broadly speaking, the methods that have been published for the computation of the
probability Pr[Xλ = n] fall into two categories: Methods aimed at the computation of a
whole set of probabilities and methods aimed at the computation of a single probability.
Here, we target the computation of a single probability.

2 State of the Art

To the best of the authors’ knowledge, the methods described in [5, 6, 3, 7] constitute
the state of the art for the computation of a single probability Pr[Xλ = n].

The method proposed in [3] consists in using eq. (1) with n replaced by either a
Stirling approximation or a polynomial approximation. The method can suffer from
numerical overflow when n is not very close to λ and can suffer from numerical underflow
when λ is large.

Eq. (1) can be rewritten in several ways. Among them, we find

Pr[Xλ = n] = e−λ+n log λ−log Γ(n+1) (2)

= en−λ+n log λ
n
−log G(n) (3)

= en−λ−n lns(λ,n)−log G(n), n ≥ 1 , (4)

where Γ denotes the gamma function, G(n) = Γ(n+1)(
n
e

)n , n ≥ 1 is a scaled gamma function,

and, denoting log1px = log x,

lns(λ, n) =

− log1p
(
λ−n
n

)
if n < λ

log1p
(
n−λ
λ

)
if n ≥ λ

.
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The method proposed in the well-known book [7] consists in using Eq. (2) together
with an accurate approximation for log Γ(n+ 1). The method is inaccurate when λ and
n are large.

The method proposed in [5] consists in using Eq. (3) together with an accurate
approximation for log G(n). The method is inaccurate when λ and n are large and
n ≈ λ.

The method proposed in [6] consists in using Eq. (4) together with the same approx-
imation for log G(n). The method is inaccurate when λ is small and when λ is large and
n is very close to λ but different from it.

3 Our Contribution

We develop a new method for the computation of a single probability Pr[Xλ = n] that
is accurate and fast for a wide range of (λ, n) pairs. In the method, the probability is
approximated differently depending on the value of λ and n at hand.

For the set of (λ, n) pairs satisfying 2−43 ≤ λ ≤ 29, n ≤ 22, the probability is
computed using eq. (1) straightforwardly.

For the set of (λ, n) pairs satisfying 0 < λ < 243 or λ > 29, and 0 < n ≤ 22, the
probability is computed using

Pr[Xλ = n] =
1√
2πn

e
(n−λ)−n lns(λ,n)+log

G(n)√
2πn . (5)

The correctly rounded values for log G(n)√
2πn

, 0 < n ≤ 22 are computed beforehand using

the MPFI multiprecision interval arithmetic library [8] and stored.
For the set of (λ, n) pairs satisfying λ > 0 and, n > max{22, 1.5λ}, or n = λ > 22,

or 22 < n < λ
1.5 , the probability is approximated using eq. (5) together with an accurate

approximation for log G(n)√
2πn

. The approximation is such that, assuming exact arithmetic,

the incurred relative error is ≤ 2−53.
Let

f(x) = −x+ (x+ 1) log1px .

For the set of (λ, n) pairs satisfying max{λ, 22} < n ≤ 1.5λ, the probability is approxi-
mated using

Pr[Xλ = n] =
1√
2πn

e
−
(
λ f
(
n−λ
λ

)
+log

G(n)√
2πn

)
together with accurate approximations for both f

(
n−λ
λ

)
and log G(n)√

2πn
. The approxima-

tions are such that, assuming exact arithmetic, the incurred relative error is ≤ 2−53.
Let

g(x) =
x− log1px

1 + x
.
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For the set of (λ, n) pairs satisfying (λ, n) pairs satisfying max{ λ1.5 , 22} ≤ n < λ, the
probability is approximated using

Pr[Xλ = n] =
1√
2πn

e
−
(
λ g
(
λ−n
n

)
+log

G(n)√
2πn

)
together with accurate approximations for both g

(
λ−n
n

)
and log G(n)√

2πn
. The approxima-

tions are such that, assuming exact arithmetic, the incurred relative error is ≤ 2−53.
To assess the accuracy of the new method, we performed the following numerical

experiment. First, we devised a procedure that using the MPFI library, allows us to
compute tight rigorous bounds for Pr[Xλ = n]. Next, we chose a representative set
of values for the λ parameter, namely 10−1, 100, . . . , 1015, and for each value of λ we
obtained, using the procedure, the set of n values, N (λ), for which Pr[Xλ = n] does not
underflow.1 Finally, for each set N (λ), we chose 100 values of n uniformly distributed
between the endpoints of the set and for each such n computed, using the procedure
referred to previously, tight rigorous bounds for Pr[Xλ = n] and, using them and the
approximation yielded the method, P̃n(λ), computed as a measure of accuracy the index

d = − log10

∣∣∣Pr[Xλ = n]− P̃n(λ)

Pr[Xλ = n]

∣∣∣ . (6)

Te experiment was also performed for each of the methods described in [7, 5, 6]. The
results are reported in table 1. Also shown in the table are the average CPU times
required by each method to estimate a single probability Pr[Xλ = n] as a function of
λ. As we can see, the method seems to be slightly faster than the remaining methods
and more accurate, with reductions in the actual relative error by more than ten orders
of magnitude in some cases. This improvement in accuracy is still more noteworthy if
we take into account that in the experiment, we are dealing with λ up to 1015 and are
estimating probabilities that can be close to 2.2 · 10−308.
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meth. [7] meth. [5] meth. [6] prop.
λ dm dM t dm dM t dm dM t dm dM t

10−1 12.9 15.7 0.27 4.42 6.69 0.18 3.49 6.69 0.17 13.0 17.7 0.12

100 13.0 16.5 0.25 4.42 7.02 0.18 2.30 7.02 0.17 12.9 18.1 0.11

101 12.5 15.7 0.26 4.42 7.49 0.18 4.06 7.49 0.18 13.0 17.0 0.12

102 12.1 14.9 0.27 4.42 8.21 0.19 2.30 8.21 0.18 13.0 16.5 0.12

103 11.4 14.5 0.27 6.43 9.32 0.19 6.43 9.32 0.18 12.6 17.4 0.13

104 10.5 12.9 0.27 10.2 10.9 0.19 10.2 10.8 0.17 12.3 16.5 0.18

105 9.57 12.2 0.27 11.0 13.2 0.19 11.8 13.9 0.17 12.8 16.6 0.15

106 8.57 10.8 0.27 9.98 14.6 0.18 11.1 14.7 0.17 12.8 16.5 0.14

107 7.32 10.6 0.27 8.97 15.4 0.18 10.7 15.4 0.17 12.8 17.3 0.13

108 6.26 9.71 0.27 7.96 15.3 0.18 10.2 15.3 0.17 12.6 16.6 0.13

109 5.18 8.06 0.27 6.96 14.7 0.18 9.68 14.7 0.17 12.6 16.4 0.12

1010 4.32 7.15 0.26 5.96 15.1 0.19 9.37 15.1 0.17 12.7 16.7 0.12

1011 3.09 6.24 0.30 4.97 16.4 0.18 8.74 16.4 0.17 12.6 17.1 0.12

1012 2.23 4.97 0.28 3.96 15.0 0.19 8.28 15.0 0.17 12.7 17.0 0.12

1013 1.11 4.11 0.27 2.95 15.9 0.19 7.69 15.9 0.17 12.8 16.9 0.12

1014 0.00 2.90 0.27 1.96 14.6 0.19 7.25 14.6 0.17 12.8 17.2 0.11

1015 0.00 1.24 0.27 0.94 15.2 0.18 6.63 15.2 0.17 12.7 16.5 0.11

Table 1: Comparison of the methods described in [5, 6, 7] with the method proposed
in the paper. For each method and for each value of λ we report, from left to right,
the minimum value of the accuracy index (6) d obtained for 100 values of n distributed
uniformly between the endpoints of the in sets N (λ) = {n ≥ 0 : Pr[Xλ = n] ≥ 2−1 022},
the maximum value of d over the same n values, and the average CPU time obtained as
a function of λ.
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