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1 State of the art

We have formulated an easy and flexible framework for the estimation and predic-
tion of Banach-valued autoregressive processes of order one with exogenous vari-
ables (ARBX(1) processes), without conditions over the Banach space involved.
These theoretical developments have been applied to the short–term forecasting of
daily average concentrations of atmospheric aerosol particles with diameters less
than 10 µm, also known as PM10 (coarse particles).

The importance of the accurate forecasting of this kind of particles relies on
being inhalable atmospheric pollution particles, which impact the public health.
Following the suggestions by the World Health Organization, the European Union
developed in 2008 (in particular, directive 2008/50/EU) a complete legislative
package, establishing health based standards for the levels of PM10: daily mean
concentration of PM10 should not be greater than 50 µg m−3 more than 35 days
per year, neither the annual average of concentration of PM10 shall not be greater
than 40 µg m−3. However, this limit has been exceed during the last years in
heavily industrialized areas, deriving in severe people’s health problems. Therefore,
PM10 forecasting is crucial to adopting efficient public transport policies.

Several approaches have been adopted in the analysis of pollution data (see,
e.g., [16], for a comparative study). In [21], the singular value decomposition is
applied to identify spatial air pollution index (API) patterns, in relation to me-
teorological conditions in China. A novel hybrid model combining Multilayer per-
ceptron model and Principal Component Analysis (PCA) is introduced in [14], to
improve the air quality prediction accuracy in urban areas. Factor analysis and
Box–Jenkins methodology are considered in [11], to examine concentrations of
primary air pollutants such as NO, NO2 , NOx , PM10, SO2 and ground level
O3 in the town of Blagoevgrad, Bulgaria. In the recent literature, one can find
several modelling approaches for PM10 forecasting. Among the most common sta-
tistical techniques applied, we mention multiple regression, non–linear state space
modelling and artificial neural networks (see, e.g., [12,17,20]). Functional Data
Analysis (FDA) techniques also play a crucial role in air quality forecasting.
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Concerning the methodology, there exists an extensive literature on functional
time series prediction, when a Hilbert space is adopted. Since the easily on work-
ing in the Hilbertian framework (Hilbert space provides a generalization of an
Euclidean space), several proposals arise, in the parametric and nonparametric
framework, for the estimation of the autocorrelation operator, and the prediction
of the corresponding processes in function spaces. This work will be focused on
parametric functional linear time series techniques which have been demonstrated
fast and computational low-cost, in contrast with the more flexible nonparametric
functional statistical approach, where the so–called curse of dimensionality prob-
lem arises (see [9]). Particularly, the approach presented allows a flexible analysis
of the local variability of the functional values of the random variables studied, as
well as the derivation of strong-consistent functional plug–in predictors, under a
state space based framework. From a theoretical point of view, in the autoregres-
sive Hilbertian process framework, the asymptotic properties of componentwise
estimators of the autocorrelation operator, and their associated plug-in predictors
have been derived in [4], among others. Recently, in [1,18], alternative operator
norms for consistency have been investigated. The separable Banach space con-
text has also been adopted in linear functional time series modeling, under a state
space based approach. This literature has mainly been focused on the spaces of
continuous functions C([0, 1]) with the supremum norm (see [5], among others),
and on the Skorokhod space of right–continuous functions on [0, 1], having limit
at the left at each t ∈ [0, 1], equipped with the Skorokhod topology, usually de-
noted as J1–topology (see, e.g., [2]). The lack of an inner product structure, in the
abstract Banach–valued time series framework, is supplied in [19] by considering
suitable embeddings into related Hilbert spaces.

Concerning the inclusion of exogenous information, a first attempt for the inclu-
sion of exogenous information in the functional time series framework can be found
in [6,7], where the so-called ARHX(1) processes (Hilbert-valued autoregressive pro-
cesses of order one with exogenous variables) are introduced. Enhancements were
subsequently proposed by [15]. First order conditional autoregressive Hilbertian
processes were introduced in [13]. The present paper extends the time series frame-
work in [19] to the case of first-order Banach-valued autoregressive processes with
exogenous variables (ARBX(1) processes). Functional parameter estimation and
plug–in prediction can be addressed in our ARBX(1) context, from the multivari-
ate infinite–dimensional formulation of the results in [19]. Specifically, a matrix–
operator–based formulation of the ARB(1) process (Banach–valued autoregressive
process of order one) state equation is considered. The required Hilbert space
embeddings, and sufficient conditions for the strong–consistency of the autocor-
relation operator estimator (reflecting temporal correlations between endogenous
and exogenous variables), and the associated plug–in predictor, were obtained.

2 Summary: motivation and contributions

It is well-known that Functional Data Analysis (FDA) techniques provide a flexible
framework for the local analysis of high–dimensional data which are continuous in
nature. Computational advances have made possible the implementation of flexible
models for random elements in function spaces. One of the main subjects in FDA is
the suitable choice of the function space, where the observed data take their values.
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In particular, the norm of the selected space should provide an accurate measure
of the local variability of the observed endogenous and exogenous variables, that
could be crucial in the posterior representation of the possible interactions.

This paper adopts an abstract Banach space (a complete norm space: the no-
tion of orthogonality disappears) framework assuming an autoregressive dynam-
ics in time, for all the functional random variables involved in the model. Most
of authors have worked with Banach spaces (such as C([0, 1])) well-adapted for
measuring the local regularity. This work is focused on exploiting the opposite
motivation, considering Banach spaces in which functions are locally singular, and
then allowing irregular (non-smoothed), preserving the information included in
singular data such as meteorological variables. Particularly, the scale of fractional
Besov spaces provides a suitable functional framework, modelling local singularity
in an accurate way. Note that the norms in these spaces can be characterized in
terms of the wavelet transform. Specifically, wavelet bases provide countable dense
systems in Besov spaces, that can be used in the definition of the inner product
and associated norms in weighted fractional Sobolev spaces, constructed from the
space of square integrable functions on an interval (see [19]).

Then, a Banach-valued autoregressive process of order one with exogenous
variables (ARBX(1) process) is considered. Let X = {Xn, n ∈ Z} be a zero-mean
ARB(1) process, with P (Xn ∈ B) = 1, n ∈ Z, satisfying

Xn = ρ (Xn−1) + εn, n ∈ Z, (1)

where ρ is the autocorrelation operator, which is assumed to be a bounded linear

operator on B, that is, ρ ∈ L(B), with
(
L(B), ‖·‖L(B)

)
denoting the Banach

space of continuous operators with the supremum norm. Here, ε = {εn, n ∈ Z}
represents the innovation process, which is assumed to be a B-valued strong white
noise, and uncorrelated with the random initial condition. In this work, exogenous
information is incorporated to equation (1) in an additive way. Thus, the state
space equation of an ARBX(1) process is given by:

Xn = ρ (Xn−1) +
b∑

i=1

ai (Zn,i) + εn, n ∈ Z, (2)

where {ai, i = 1, . . . , b} are bounded linear operators on B. The exogenous func-
tional random variables Zi = {Zn,i, n ∈ Z}, i = 1, . . . , b, are assumed to satisfy
an ARB(1) model. The endogenous and exogenous information affecting the func-
tional response at a given time is incorporated through a suitable linear model,
involving a matrix autocorrelation operator. This operator model reflects possible
interactions between all endogenous and exogenous functional random variables at
any time. Sufficient conditions are now formulated to ensure the strong consistency
with respect to the supremum norm of the formulated componentwise functional
parameter estimator. The simulation study and real–data application illustrate
the fact that our approach is sufficiently flexible to describing the local behaviour
of both, regular and singular functional data. The goal of the simulation study
undertaken is to illustrate the flexibility, and the large–sample–size properties of
the ARBX(1) parameter estimator, and associated functional plug–in predictor.
The effect of the discretization step size is investigated as well. Note that, in the
singular case, we can choose a suitable norm that measures the local fluctuations in
a precise way. This information is relevant in the analysis of PM10 concentrations,
as illustrated in the real-data application.
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3 Future research lines

The incorporation of spatial interactions in the analysis could be addressed in a
multivariate infinite-dimensional spatial framework, and constitutes the subject of
a subsequent paper: a spatial functional correlation analysis should be considered.
There are several available methods in the current spatial functional statistical
literature (see [8]) to address this issue. Particularly, we refer to the frameworks of
multivariate functional random field based prediction (see, e.g., [3]); and, spatial
functional kriging–based techniques (see, e.g., [10], among others).
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