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Abstract

The interest towards key nodes in networks emerged in the past century as a subject of Mathemat-
ical Sociology and Graph Theory, and has grown to the point of becoming one of the most noteworthy
challenges for understanding social systems. State-of-the-art of network analysis includes discerning
the relevance of a group of nodes as network representatives. Many sophisticated approaches based on
techniques borrowed from disciplines such as Physics and Statistics have been developed. However,
only a few authors use mathematical optimization to address group relevance.

This work presents a mathematical programming formulation for identifying the group of most
relevant nodes and their communities. The initial idea was to explore the use of eigenvector centrality,
a well-known measure for individual nodes, to spot the group of key members of a network. We
realized that real networks usually display a modular structure that emanates from the combination
of functional subunits, known by social scientists as communities. Aiming at coverage, it appeared
natural to assume that targeted key members will belong to different communities. Our approach
emerged then as a combination of clustering, which uncovered the communities, and eigenvector
centrality, which quantified group relevance. Namely, a representative is chosen for each cluster to
be in the group of key members. The network clustering yielding maximum overall relevance of the
representatives, which is calculated as an eigenvector centrality, is selected.

1 State of the art

When social networks analysis was still in its infancy, different strategies were explored in order to
determine the relevance of a single node. This gave rise to the so-called centrality measures. Some
of the classics are based on local criteria such as the number of connections with other nodes of the
network (degree centrality), the number of shortest paths that contain the node (betweenness centrality
[1, 2]) or the distance between the node in question and the rest of the nodes in the network (closeness
centrality (3, 4]). A different approach assumes that one node’s importance not only depends on its
connections to the rest of the network, but also on the importance of its neighbors. Translating such
recursive definition into a mathematical formula yields the search of the eigenvectors of a matrix,
named matriz of relationships in Sociology and adjacency matriz in Graph Theory. The result is
a decentralized measure that has been known as eigenvector centrality [5, 6] and inspired popular
Google’s method for rating web pages, PageRank [7]. Among later approaches to measure the relevance
of individual nodes, we can find coreness [8] or h-index [9].
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State-of-the-art challenges in network analysis include discerning the relevance of a group of nodes
[10, 11, 12]. In order to accomplish the new task, a first thought could be to leverage previous
knowledge of the problem on a single node. First attempts to approach joint relevance rely upon
adaptations of classical degree, closeness and betweenness centralities [13, 14]. Alternatively, they try
to identify the minimal set of nodes whose simultaneous removal will fragment the network [13, 15]. In
this context, [15] presented an integer linear programming formulation that determines which nodes
to remove so that the remaining ones has minimum pair-wise connectivity.

More intricate approaches, coming from very different domains, study influence propagation. In
[10] the problem of finding the minimal set of nodes to fragment the network is mapped onto optimal
percolation. They developed a heuristic method scalable for big data. Other works use infectious
models of Epidemiology to study information spreading through the network [11]. A proportional
hazard model is proposed in [16] to shape the spread of behaviors. This survival model served to
measure influence and susceptibility on 1.3 million Facebook users. A recent work proposed several
integer linear programming formulations for least cost influence propagation [17]. They incorporated
activation functions to represent which nodes are reached by influence propagation. Based on the
formulations, the authors developed an exact method and also a heuristic algorithm that hinges on
column generation.

In recent years, community discovery led by key nodes identification has become a hot research
topic in network analysis. Networks topology is rarely homogeneous: real networks usually display a
modular structure where one can distinguish different communities. In this paradigm it is assumed
that targeted key members will tend to be in different communities [18]. A recent work identifies
key nodes in accordance to their relevance and relative dispersion, which are then used as seeds for a
k-means clustering [19]. A different strategy also uses the key nodes as seeds but interprets clustering
as the result of a non-cooperative game where every node tries to maximize its own social identity
[20]. Other approaches use statistical models, such as kernel functions [18, 21] or unbiased random
walks [22], to represent relevance and select a number of centers. In a second step, community mem-
berships are determined by evolving a dynamical system where centers memberships are immutable
[18, 22]. However, none of these approaches consider joint optimization of the group of key nodes and
community discovery.

2 The model

We propose to embed eigenvector computation into a k-centroids clustering framework. In this
paradigm for cluster analysis, each group is represented by a centroid and individuals belong to the
group with closest centroid. Different sample statistics can be used to determine the clusters represen-
tatives, being the mean or median the most widespread ones. As a novelty, our model uses eigenvector
centrality instead. This way, centroids are interpreted as the most relevant members within each
group, while clusters correspond to their spheres of influence.

As every k-centroids clustering, our approach is made of two main subtasks. One is to determine the
centroids and the other is to decide cluster memberships. If we assume that node-cluster memberships
are known, eigenvector centrality can be applied within each cluster. The nodes with highest centrality
within their clusters, the centroids, will then make the top group for such network partition. Consider
now the reverse problem where centroids are given and memberships need to be decided. Unlike in k-
means, there is no indication here regarding how nodes should be assigned to clusters. In other words,
given the centroids, there is no natural node-cluster assignment that allows to iterate as in Lloyd’s
k-means. In k-means clustering, each node belongs to the cluster with closest centroid, but here nodes
belong to the cluster whose centroid’s influence they contribute the most, and this is something that
we cannot determine individually for each node. The problem we address here is purely combinatorial:



exploring all the exponentially many partitions of the network and computing the associated centroids
would yield the optimal partition and, with it, our group of most relevant members. Mathematical
Programming is what allows us to find an optimal solution to this approach without using brute force.

Several interesting questions concerning the field of Operations Research arose when modeling
eigenvector centrality with clustering. The first one was to write a mathematical program that we
could manage. Naive attempts to model eigenvector centrality over the clusters lead to highly non-
linear programs. Solving them by a sequential linearization approach turned out inoperative. In the
end, a more elaborated modeling of eigenvector calculation over the clusters, which includes additional
decision variables and constraints, resulted in a mixed-integer linear program for the problem. Vari-
ables reduction was investigated for undirected networks. A second difficulty concerned symmetry
breaking in integer programming. Symmetry arose from decision variables and constraints to model
network clustering. This produced a particular case of set partitioning, a seminal problem in integer
programming. Rediscovering the facets of the partitioning orbitope introduced by [23] allowed us to
break the symmetry and enhance our formulation.

3 Contributions

The resulting model gives an exact approach to identify the group of most relevant nodes, where
relevance is based on eigenvector centrality. Originally thought to give support to eigenvector compu-
tation, clustering became a key aspect of our proposal, whose result is twofold. Clustering partition
and group relevance optimization interact in a two-directional feedback mechanism to reveal both
network modular structure and key members of the network. Network partition directly affects group
relevance estimation, while optimizing such results in a more suitable partition in clusters. Compu-
tational experiments on real-life and synthetic networks support these statements. Results on Les
Misérables, Zachary’s Karate Club and American Political Book networks reveal previously unno-
ticed key members. Additionally, clusters are consistent with previous knowledge on the community
structure of these networks. Our computational experience on synthetic networks demonstrates an
adequate scalability of the method and validates community discovery.

The main contributions of the work can be summarized as follows. First, an innovative model that
combines optimization of group relevance and community discovery in the same process is proposed.
Second, our exact approach shows the potential of mathematical programming to uncover complex
network structures, a context where heuristics abound. Finally, the proposed model serves as a suitable
adaptation of widespread PageRank to the problem of group centrality.
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